Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in

Advanced Linear Algebra (MA 409) Problem Sheet - 11

Elementary Matrix Operations and Elementary Matrices

- 1. Label the following statements as true or false.
 - (a) An elementary matrix is always square.
 - (b) The only entries of an elementary matrix are zeros and ones.
 - (c) The $n \times n$ identity matrix is an elementary matrix.
 - (d) The product of two $n \times n$ elementary matrices is an elementary matrix.
 - (e) The inverse of an elementary matrix is an elementary matrix.
 - (f) The sum of two $n \times n$ elementary matrices is an elementary matrix.
 - (g) The transpose of an elementary matrix is an elementary matrix.
 - (h) If *B* is a matrix that can be obtained by performing an elementary row operation on a matrix *A*, then *B* can also be obtained by performing an elementary column operation on *A*.
 - (i) If *B* is a matrix that can be obtained by performing an elementary row operation on a matrix *A*, then *A* can be obtained by performing an elementary row operation on *B*.
- 2. Let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -2 & 1 \\ 1 & -3 & 1 \end{pmatrix}, \text{ and } C = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 1 & -3 & 1 \end{pmatrix}$$

Find an elementary operation that transforms A into B and an elementary operation that transforms B into C. By means of several additional operations, transform C into I_3 .

3. Obtain the inverse of each of the following elementary matrices.

	0	0	1	\ /	1	0	0)	\ (/ 1	0	0
(a)	0	1	0	(b)	0	3	0	(c)	0	1	0
	1	0	0)) (0	0	1)) (2	0	1 /

- 4. Prove that any elementary $n \times n$ matrix can be obtained in at least two ways either by performing an elementary row operation on I_n or by performing an elementary column operation on I_n .
- 5. Prove that *E* is an elementary matrix if and only if E^t is.
- 6. Let *A* be an $m \times n$ matrix. Prove that if *B* can be obtained from *A* by an elementary row [column] operation, then B^t can be obtained from A^t by the corresponding elementary column [row] operation.

7. Prove that if a matrix *Q* can be obtained from a matrix *P* by an elementary row operation, then *P* can be obtained from *Q* by an elementary row operation of the same type.

Hint : Treat each type of elementary row operation separately.

- 8. Prove that any elementary row [column] operation of type 1 can be obtained by a succession of three elementary row [column] operations of type 3 followed by one elementary row [column] operation of type 2.
- 9. Prove that any elementary row [column] operation of type 2 can be obtained by dividing some row [column] by a nonzero scalar.
- 10. Prove that any elementary row [column] operation of type 3 can be obtained by subtracting a multiple of some row [column] from another row [column].
- 11. Let *A* be an $m \times n$ matrix. Prove that there exists a sequence of elementary row operations of types 1 and 3 that transforms *A* into an upper triangular matrix.
